Projective Quadratic Regression for Online Learning
نویسندگان
چکیده
منابع مشابه
Nonparametric Online Regression while Learning the Metric
We study algorithms for online nonparametric regression that learn the directions along which the regression function is smoother. Our algorithm learns the Mahalanobis metric based on the gradient outer product matrix G of the regression function (automatically adapting to the effective rank of this matrix), while simultaneously bounding the regret —on the same data sequence— in terms of the sp...
متن کاملReinforcement Learning via Online Linear Regression
In reinforcement learning (RL) [9], the exploration-exploitation tradeoff is the problem of deciding, given the current state and previous experience, whether to act greedily (i.e., to exploit) or non-greedily (i.e., to explore). Such a decision has to balance the conflicting objectives of maximizing reward (which is the ultimate goal of an RL agent) and acquiring knowledge about the environmen...
متن کاملSecond-order non-stationary online learning for regression
The goal of a learner, in standard online learning, is to have the cumulative loss not much larger compared with the best-performing function from some fixed class. Numerous algorithms were shown to have this gap arbitrarily close to zero, compared with the best function that is chosen off-line. Nevertheless, many real-world applications, such as adaptive filtering, are non-stationary in nature...
متن کاملLocal Gaussian Process Regression for Real Time Online Model Learning
Learning in real-time applications, e.g., online approximation of the inverse dynamics model for model-based robot control, requires fast online regression techniques. Inspired by local learning, we propose a method to speed up standard Gaussian process regression (GPR) with local GP models (LGP). The training data is partitioned in local regions, for each an individual GP model is trained. The...
متن کاملEfficient Online Learning for Large-Scale Sparse Kernel Logistic Regression
In this paper, we study the problem of large-scale Kernel Logistic Regression (KLR). A straightforward approach is to apply stochastic approximation to KLR. We refer to this approach as non-conservative online learning algorithm because it updates the kernel classifier after every received training example, leading to a dense classifier. To improve the sparsity of the KLR classifier, we propose...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2020
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v34i04.5951